0=162(y^2)+5y-162

Simple and best practice solution for 0=162(y^2)+5y-162 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=162(y^2)+5y-162 equation:



0=162(y^2)+5y-162
We move all terms to the left:
0-(162(y^2)+5y-162)=0
We add all the numbers together, and all the variables
-(162y^2+5y-162)=0
We get rid of parentheses
-162y^2-5y+162=0
a = -162; b = -5; c = +162;
Δ = b2-4ac
Δ = -52-4·(-162)·162
Δ = 105001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{105001}}{2*-162}=\frac{5-\sqrt{105001}}{-324} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{105001}}{2*-162}=\frac{5+\sqrt{105001}}{-324} $

See similar equations:

| -38-8b=6(1+6b) | | -5+1/2+7.2−1/5=x | | 16-7m=-7(3m+5)-3m | | 5-4(8n+7)=-215 | | -2(y-5)=-5y+37 | | 21/2=5v+4v | | 25=j/5+5 | | 6(1+4v)-3(v+2)=-7v+4v | | 8x+6=5x+2x | | 10y-2y=-16 | | x-5=12+x+7-6x | | 5u-6=-16 | | (2x+4)+(2x+5)=180 | | 6x-8=4x+24 | | -6x-30x=+72 | | 5-k+12=20-45−k+12=20−4 | | 1.10=2.5x+.5 | | -10+7k=46 | | 5y=4y+14 | | 3x-3=-12-4x-2x | | 5x+4=66666666666666666 | | -8(-4+3v)-6v=-208 | | 2(p+3)^2+5(p+3)+1=0 | | 11x-16=3x+4 | | 7x-35=56 | | -7(1+7x)=189 | | 125m-75m+38,200=40,400-150m | | 3(y+-10)=42 | | -96=-8(n+5) | | 6a-4a+5=8-28 | | 2x+88=122 | | 6(x+1)-5x=8+2(x-1 |

Equations solver categories